LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling Proper and Improper Sitting Posture of Computer Users Using Machine Vision for a Human–Computer Intelligent Interactive System during COVID-19

Photo by perrsim from unsplash

Human posture recognition is one of the most challenging tasks due to the variation in human appearance, changes in the background and illumination, additional noise in the frame, and diverse… Click to show full abstract

Human posture recognition is one of the most challenging tasks due to the variation in human appearance, changes in the background and illumination, additional noise in the frame, and diverse characteristics and amount of data generated. Aside from these, generating a high configuration for recognition of human body parts, occlusion, nearly identical parts of the body, variations of colors due to clothing, and other various factors make this task one of the hardest in computer vision. Therefore, these studies require high-computing devices and machines that could handle the computational load of this task. This study used a small-scale convolutional neural network and a smartphone built-in camera to recognize proper and improper sitting posture in a work-from-home setup. Aside from the recognition of body points, this study also utilized points’ distances and angles to help in recognition. Overall, the study was able to develop two objective datasets capturing the left and right side of the participants with the supervision and guidance of licensed physical therapists. The study shows accuracies of 85.18% and 92.07%, and kappas of 0.691 and 0.838, respectively. The system was developed, implemented, and tested in a work-from-home environment.

Keywords: sitting posture; posture; proper improper; improper sitting; computer; vision

Journal Title: Applied Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.