LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved YOLOv5-Based Lightweight Object Detection Algorithm for People with Visual Impairment to Detect Buses

Photo by florianklauer from unsplash

Object detection is crucial for individuals with visual impairment, especially when waiting for a bus. In this study, we propose a lightweight and highly accurate bus detection model based on… Click to show full abstract

Object detection is crucial for individuals with visual impairment, especially when waiting for a bus. In this study, we propose a lightweight and highly accurate bus detection model based on an improved version of the YOLOv5 model. We propose integrating the GhostConv and C3Ghost Modules into the YOLOv5 network to reduce the number of parameters and floating-point operations per second (FLOPs), ensuring detection accuracy while reducing the model parameters. Following that, we added the SimSPPF module to replace the SPPF in the YOLOv5 backbone for increased computational efficiency and accurate object detection capabilities. Finally, we developed a Slim scale detection model by modifying the original YOLOv5 structure in order to make the model more efficient and faster, which is critical for real-time object detection applications. According to the experimental results, the Improved-YOLOv5 outperforms the original YOLOv5 in terms of the precision, recall, and [email protected]. Further analysis of the model complexity reveals that the Improved-YOLOv5 is more efficient due to fewer FLOPS, with fewer parameters, less memory usage, and faster inference time capabilities. The proposed model is smaller and more feasible to implement in resource-constrained mobile devices and a promising option for bus detection systems.

Keywords: improved yolov5; detection; object detection; model; visual impairment

Journal Title: Applied Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.