LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Study of the Deformation Law of the Surrounding Rock of a Laminated Roadway Based on FLAC3D Secondary Development

Photo from wikipedia

To investigate and analyze the influence of different stress environments on the deformation and destabilization of the rocks surrounding laminated roadways under high stress, this study conducted numerical simulations of… Click to show full abstract

To investigate and analyze the influence of different stress environments on the deformation and destabilization of the rocks surrounding laminated roadways under high stress, this study conducted numerical simulations of coal–rock combination under different circumferential pressures and of the surrounding rocks of highly stressed laminated roadways under different lateral pressure coefficients. In addition, a new custom constitutive structure model was constructed based on the Mohr–Coulomb criterion and realized in FLAC3D software by combining field working conditions. The model was then developed in FLAC3D software for a second time. The results show that the calculated results of the model in this study are in good agreement with the experimental results and the errors are small, while the calculated results of the Mohr–Coulomb model differ from the experimental values under two types of surrounding rock pressure. The deformation of the Mohr–Coulomb model is significantly smaller than that of the customized model, which verifies the reasonableness and superiority of the self-built model in combination with the field conditions. This provides theoretical and practical bases for the design and optimization of stratigraphic roadway support in underground coal mines.

Keywords: deformation; surrounding rock; model; mohr coulomb; study

Journal Title: Applied Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.