LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis and Design of Nonlinear Tuned Mass Damper Based on Complex Variable Averaging Method

Photo from wikipedia

As one of the most representative passive control devices, tuned mass dampers (TMDs) are widely used in civil engineering, aerospace, machinery, and other fields, after years of research and improvement.… Click to show full abstract

As one of the most representative passive control devices, tuned mass dampers (TMDs) are widely used in civil engineering, aerospace, machinery, and other fields, after years of research and improvement. However, due to their large displacement and the use of a limiting device, they inevitably exhibit some nonlinear characteristics in practical engineering applications. This nonlinearity is often ignored; however, neglecting it in the design process can adversely affect the control performance. Therefore, considering the nonlinearity of a TMD while designing TMD parameters can make the calculation results closer to reality and benefit the structural design. In this paper, we derived the approximate analytical solution of TMD amplitude using the complex variable averaging method by considering the nonlinearity generated by a TMD in the vibration process. Theoretical optimal design parameters were obtained by analytical comparison, and we compared the computational time consumption of this method and the numerical method. The results showed that the optimized parameters of the TMD obtained by nonlinear design possessed a good vibration reduction effect both before and after the TMD generated nonlinear characteristics. Additionally, the complex averaging method generated frequency response curves tens of times faster than the numerical method.

Keywords: tuned mass; averaging method; design; variable averaging; method; complex variable

Journal Title: Applied Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.