This study focused on surface modification of cellulose nanocrystals (CNCs) to create a biocompatible, stable, and hydrophilic substrate suitable for use as a coating agent to develop a dual-contrast composite… Click to show full abstract
This study focused on surface modification of cellulose nanocrystals (CNCs) to create a biocompatible, stable, and hydrophilic substrate suitable for use as a coating agent to develop a dual-contrast composite material. The CNCs were prepared using acid hydrolysis. Hydrolysis was completed using 64% sulfuric acid at 45 °C for 1 h, which was combined with polyethylene glycol and sodium hydroxide (PEG/NaOH). The yield of samples exhibited prominent physicochemical properties. Zeta (ζ) potential analysis showed that the CNCs sample had excellent colloidal stability with a highly negative surface charge. Transmission electron microscopy (TEM) analysis confirmed that the CNCs sample had a rod-like morphology. On the other hand, field-emission scanning electron microscopy (FESEM) analysis showed that the acid hydrolysis process caused a significant reduction in particle size and changed surface morphology. In addition, cellulose nanocrystals with polyethylene glycol and sodium hydroxide (CNCs-PEG/NaOH) have many noteworthy properties such as colloidal stability, small hydrodynamic size, and water dispersibility. Furthermore, the MTT assay test on Hep G2 cells demonstrated good biocompatibility of the CNCs-PEG/NaOH and did not exhibit any cytotoxic effects. Hence, CNCs-PEG/NaOH holds the potential to serve as a dual-contrast agent for MRI techniques and other biomedical applications.
               
Click one of the above tabs to view related content.