LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Minute-Scale Models for the Diffuse Fraction of Global Solar Radiation Balanced between Accuracy and Accessibility

Photo from wikipedia

The separation models are tools used in solar engineering to estimate direct normal (DNI) and diffuse horizontal (DHI) solar irradiances from measurements of global solar irradiance (GHI). This paper proposes… Click to show full abstract

The separation models are tools used in solar engineering to estimate direct normal (DNI) and diffuse horizontal (DHI) solar irradiances from measurements of global solar irradiance (GHI). This paper proposes two empirical separation models that stand out owing to their simple mathematical formulation: a rational polynomial equation. Validation of the new models was carried out against data from 36 locations, covering the four major climatic zones. Five current top minute-scale separation models were considered references. The tests were performed on the final products of the estimation: DNI and DHI. The first model (M1) operates with eight predictors (evaluated from GHI post-processed measurements and clear-sky counterpart estimates) and constantly outperforms the already established models. The second model (M2) operates with three predictors based only on GHI measurements, which gives it a high degree of accessibility. Based on a statistical linear ranking method according to the models’ performance at every station, M1 leads the hierarchy, ranking first in both DNI and DHI estimation. The high accessibility of the M2 does not compromise accuracy; it is proving to be a real competitor in the race with the best-performing current models.

Keywords: minute scale; scale models; accessibility; models diffuse; global solar; separation models

Journal Title: Applied Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.