LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inactivation of Cercospora lactucae-sativa through Application of Non-Thermal Atmospheric Pressure Gliding Arc, Tesla Coil and Dielectric Barrier Discharge Plasmas

Photo from wikipedia

Cercospora leaf spot disease is a serious problem for lettuce cultivation worldwide. Cercospora lactucae-sativa, the causative agent of leaf spot disease on lettuce, was treated with non-thermal atmospheric pressure gliding… Click to show full abstract

Cercospora leaf spot disease is a serious problem for lettuce cultivation worldwide. Cercospora lactucae-sativa, the causative agent of leaf spot disease on lettuce, was treated with non-thermal atmospheric pressure gliding arc (GA), tesla coil (TC) and dielectric barrier discharge (DBD) plasmas for the in vitro fungal inactivation of both mycelial growth and conidial germination. The fungus was exposed to the three plasmas individually for 5, 10, 15 and 20 min. The results showed that DBD plasma inactivated fungal growth during all exposure periods, and the highest inhibitory effect was caused by exposure to DBD plasma for 20 min, at 93.33% inhibition. The germination of fungal conidia was completely inactivated after exposure to all three non-thermal plasmas for 5 min, as observed 4 and 24 h after incubation. The pathogenesis of C. lactucae-sativa on lettuce after plasma treatments for 5 min was examined by spraying an inoculation of the treated conidia on lettuce. The results showed that all three plasmas reduced the disease incidence and severity compared to the non-treated control. Therefore, the non-thermal atmospheric pressure GA, TC and DBD plasmas have antifungal potential for the inactivation of C. lactucae-sativa, making them an interesting novel technology for plant disease control.

Keywords: atmospheric pressure; thermal atmospheric; plasmas; non thermal; lactucae sativa

Journal Title: Applied Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.