LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intensified Pozzolanic Reaction on Kaolinite Clay-Based Mortar

Photo from wikipedia

The objective of this study is to develop and characterize kaolinite clay-based structural mortar. The pozzolanic reaction induced from two mineral additives, i.e., calcium hydroxide and silica fume (SF), and… Click to show full abstract

The objective of this study is to develop and characterize kaolinite clay-based structural mortar. The pozzolanic reaction induced from two mineral additives, i.e., calcium hydroxide and silica fume (SF), and the physical filling effect from SF, were found to be effective on the enhancement of structural properties. Based on several preliminary experiments, 7:3 ratio of kaolinite clay/calcium hydroxide was selected as a basic binder. Then, the amount of SF was chosen as 0%, 7.5%, and 15% of the total binder to consider both the chemical and physical effects. The results showed that compressive strengths of samples with 7.5% and 15% SF are significantly increased by approximately 200% and 350%, respectively, at 28 days compared to the sample without SF. However, based on the results of the sample with 15% SF, it is found that excessive addition of SF causes long-term strength loss, possibly owing to micro cracks. With the careful consideration on this long-term behavior, this suggested new mix design can be further extended to develop sustainable structural materials using natural minerals or waste materials with nonbinding properties.

Keywords: kaolinite clay; pozzolanic reaction; clay based; mortar

Journal Title: Applied Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.