LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive Global Fast Sliding Mode Control for Steer-by-Wire System Road Vehicles

Photo by charlesdeluvio from unsplash

A steer-by-wire (SbW) system, also known as a next-generation steering system, is one of the core elements of autonomous driving technology. Navigating a SbW system road vehicle in varying driving… Click to show full abstract

A steer-by-wire (SbW) system, also known as a next-generation steering system, is one of the core elements of autonomous driving technology. Navigating a SbW system road vehicle in varying driving conditions requires an adaptive and robust control scheme to effectively compensate for the uncertain parameter variations and external disturbances. Therefore, this article proposed an adaptive global fast sliding mode control (AGFSMC) for SbW system vehicles with unknown steering parameters. First, the cooperative adaptive sliding mode observer (ASMO) and Kalman filter (KF) are established to simultaneously estimate the vehicle states and cornering stiffness coefficients. Second, based on the best set of estimated dynamics, the AGFSMC is designed to stabilize the impact of nonlinear tire-road disturbance forces and at the same time to estimate the uncertain SbW system parameters. Due to the robust nature of the proposed scheme, it can not only handle the tire–road variation, but also intelligently adapts to the different driving conditions and ensures that the tracking error and the sliding surface converge asymptotically to zero in a finite time. Finally, simulation results and comparative study with other control techniques validate the excellent performance of the proposed scheme.

Keywords: sliding mode; system; control; road; sbw system; steer wire

Journal Title: Applied Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.