LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-Local Effects in Brillouin Optical Time-Domain Analysis Sensors

Photo from wikipedia

Brillouin optical time-domain analysis (BOTDA) sensors have great potential to provide distributed measurements of temperature and strain over large structures with high spatial resolution and measurement precision. However, their performance… Click to show full abstract

Brillouin optical time-domain analysis (BOTDA) sensors have great potential to provide distributed measurements of temperature and strain over large structures with high spatial resolution and measurement precision. However, their performance ultimately depends on the amount of probe and pump pulse power that can be injected into the sensing fiber, which determines the signal-to-noise ratio of the detected measurement signal. The probe wave power is constrained by the generation of noise induced by spontaneous Brillouin scattering and at lower power by the so-called non-local effects. In this work, we focus on the latter. We review the physical origins of non-local effects and analyze the performance impairments that they bring. In addition, we discuss the different methods that have been proposed to counteract these effects comparing their relative merits and ultimate performance. Particularly, we focus on a technique that we have devised to compensate non-local effects which is based on introducing an optical frequency modulation or dithering to the probe wave. This method is shown to provide a comprehensive solution to most of the impairments associated with non-local effects and also to enable some side benefits, such as amplification of the pump pulses to compensate the attenuation of the fiber.

Keywords: brillouin optical; non local; time domain; local effects; domain analysis; optical time

Journal Title: Applied Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.