LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3-D Printed Fabry–Pérot Resonator Antenna with Paraboloid-Shape Superstrate for Wide Gain Bandwidth

Photo by sunyu from unsplash

A three-dimensional (3-D) printed Fabry–Perot resonator antenna (FPRA), which designed with a paraboloid-shape superstrate for wide gain bandwidth is proposed. In comparison with the commonly-adopted planar superstrate, the paraboloid-shape superstrate… Click to show full abstract

A three-dimensional (3-D) printed Fabry–Perot resonator antenna (FPRA), which designed with a paraboloid-shape superstrate for wide gain bandwidth is proposed. In comparison with the commonly-adopted planar superstrate, the paraboloid-shape superstrate is able to provide multiple resonant heights and thus satisfy the resonant condition of the FPRA in a wide frequency band. A FPRA working at 6 GHz is designed, fabricated, and tested. Considering the fabrication difficulty caused by its complex structure, the prototype antenna was fabricated by using the 3-D printing technology, i.e., all components of the prototype antenna were printed with photopolymer resin and then treated by the surface metallization process. Measurement results agree well with the simulation results, and show the 3-D printed FPRA has a |S11| < −10 dB impedance bandwidth of 12.4%, and a gain of 16.8 dBi at its working frequency of 6 GHz. Moreover, in comparison with the planar superstrate adopted in traditional FPRAs, the paraboloid-shape superstrate of the proposed FPRA significantly improves the 3-dB gain bandwidth from 6% to 22.2%.

Keywords: paraboloid shape; superstrate; gain bandwidth; shape superstrate

Journal Title: Applied Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.