LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of Nonlinear Vibration in Permanent Magnet Synchronous Motors under Unbalanced Magnetic Pull

Photo from wikipedia

The vibration and noise of permanent magnet synchronous motors (PMSM) are mainly caused by unbalanced magnetic pull (UMP). This paper aims to investigate nonlinear vibration in PMSMs. Firstly, the analytical… Click to show full abstract

The vibration and noise of permanent magnet synchronous motors (PMSM) are mainly caused by unbalanced magnetic pull (UMP). This paper aims to investigate nonlinear vibration in PMSMs. Firstly, the analytical model of the air-gap magnetic field with an eccentric rotor in PMSM is studied, and the analytical model is verified by the finite element method. Then the dynamic model of an offset rotor-bearing system is established, and the gyroscopic effect, nonlinear bearing force and UMP are taken into consideration. Finally, the dynamic characteristics of different static displacement eccentricities, rotor offsets and radial clearances are investigated in both the time domain and the frequency domain. The results show that the amplitudes of dynamic responses increase with the static displacement eccentricity and rotor offset and high integer multiples of rotating frequency appear with the increase of displacement eccentricity. The coupling effects of bearing force, unbalanced mass force and UMP are observed in the frequency domain, and the frequency components in the dynamic responses indicate that the bearings have an effect on the system.

Keywords: unbalanced magnetic; permanent magnet; magnet synchronous; vibration; synchronous motors; magnetic pull

Journal Title: Applied Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.