LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Method for Singular Points Detection Based on Faster-RCNN

Photo by escape_your_mind from unsplash

Most methods for singular points detection usually depend on the orientation fields of fingerprints, which cannot achieve reliable and accurate detection of poor quality fingerprints. In this study, a new… Click to show full abstract

Most methods for singular points detection usually depend on the orientation fields of fingerprints, which cannot achieve reliable and accurate detection of poor quality fingerprints. In this study, a new method for fingerprint singular points detection based on Faster-RCNN (Faster Region-based Convolutional Network method) is proposed, which is a two-step process, and an orientation constraint is added in Faster-RCNN to obtain orientation information of singular points. Besides, we designed a convolutional neural network (ConvNet) for singular points detection according to the characteristics of fingerprint images and the existing works. Specifically, the proposed method could extract singular points directly from raw fingerprint images without traditional preprocessing. Experimental results demonstrate the effectiveness of the proposed method. In comparison with other detection algorithms, our method achieves 96.03% detection rate for core points and 98.33% detection rate for delta points on FVC2002 DB1 dataset while 90.75% for core points and 94.87% on NIST SD4 dataset, which outperform other algorithms.

Keywords: faster rcnn; detection; singular points; points detection; method; detection based

Journal Title: Applied Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.