LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Reentrant Insulating Phases in Strongly Interacting 2D Systems with Low Disorder

Photo from academic.microsoft.com

The metal-insulator transition (MIT) in two-dimension (2D) was discovered by Kravchenko et al. more than two decades ago in strongly interacting 2D electrons residing in a Si-metal-oxide-semiconductor field-effect transistor (Si-MOSFET).… Click to show full abstract

The metal-insulator transition (MIT) in two-dimension (2D) was discovered by Kravchenko et al. more than two decades ago in strongly interacting 2D electrons residing in a Si-metal-oxide-semiconductor field-effect transistor (Si-MOSFET). Its origin remains unresolved. Recently, low magnetic field reentrant insulating phases (RIPs), which dwell between the zero-field (B = 0) metallic state and the integer quantum Hall (QH) states where the Landau-level filling factor υ > 1, have been observed in strongly correlated 2D GaAs hole systems with a large interaction parameter, rs, (~20–40) and a high purity. A new complex phase diagram was proposed, which includes zero-field MIT, low magnetic field RIPs, integer QH states, fractional QH states, high field RIPs and insulating phases (HFIPs) with υ < 1 in which the insulating phases are explained by the formation of a Wigner crystal. Furthermore, evidence of new intermediate phases was reported. This review article serves the purpose of summarizing those recent experimental findings and theoretical endeavors to foster future research efforts.

Keywords: phases strongly; field; new reentrant; strongly interacting; reentrant insulating; insulating phases

Journal Title: Applied Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.