LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microwave Deicing Efficiency: Study on the Difference between Microwave Frequencies and Road Structure Materials

Photo from wikipedia

A method of deicing using microwave heating is proposed to make scientific and economical road deicing in a cold area, and to make up for deficiencies in the existing methods… Click to show full abstract

A method of deicing using microwave heating is proposed to make scientific and economical road deicing in a cold area, and to make up for deficiencies in the existing methods for melting snow and ice. This paper proposes to define microwave deicing efficiency as the heating rate of a concrete surface when heated to 0 °C (the efficiency of deicing is equal to the difference divided by heating time, which is between 0 °C and the initial temperature at the junction of ice and concrete). Based on the mechanism of microwave heating and deicing, a method combining the finite element simulation model with indoor experiments was proposed to study the deicing efficiency of microwaves, and the effects of different microwave frequencies and different road structure materials on microwave deicing efficiency were analyzed. The results show that the microwave frequency and road structure materials have a great influence on microwave deicing. For asphalt concrete, the ice melting efficiency of 5.8 GHz is 4.31 times that of 2.45 GHz, but the heating depth is less than that of 2.45 GHz. At 2.45 GHz, the melting efficiency of cement concrete is 3.89 times that of asphalt concrete. At 5.8 GHz, the melting efficiency of cement concrete is 5.23 times that of asphalt concrete. Through the consistency of the simulation and experimental results, the validity of the simulation model based on the finite element theory is verified. The results provide theoretical guidance and a practical basis for future applications of microwave deicing.

Keywords: microwave deicing; structure materials; road structure; deicing efficiency; efficiency

Journal Title: Applied Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.