LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Bilateral Tradeoff Decision Model for Wind Power Utilization with Extensive Load Scheduling

Photo from wikipedia

In this paper, we present the extensive load scheduling problem with intermittent and uncertain wind power availability. A chance-constrained bilateral tradeoff decision model is established to solve the problem. Our… Click to show full abstract

In this paper, we present the extensive load scheduling problem with intermittent and uncertain wind power availability. A chance-constrained bilateral tradeoff decision model is established to solve the problem. Our model aims at maximizing the wind power utilization and minimizing the system operation cost simultaneously by means of responsive loads, which are precisely divided into shiftable loads and high-energy loads. The chance constraint is applied to restrict the system imbalance with a small probability. Then, a revised sample average approximation (SAA) algorithm is developed to transform the chance constraint into sample average reformulations. Furthermore, the multi-objective differential evolution (MODE) method combined with SAA is proposed to solve the problem. Experiments enabling an effectiveness analysis of the two kinds of responsive loads are performed on the power system in Yancheng. The research of parameters of MODE, the sensitivity of different risk levels and the influence of iteration numbers are discussed. Finally, computational results prove that the combination of shiftable loads and high-energy loads have a better effect than adopting shiftable loads and high-energy loads separately, and the proposed method is convergent and valid in solving the problem.

Keywords: load scheduling; bilateral tradeoff; power; model; extensive load; wind power

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.