LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal Poling of New Double-Hole Optical Fibers

Photo from wikipedia

Fused silica are common fiber materials which have macroscopic central symmetry without second-order nonlinearity. Studies have shown that thermal poling of fused silica fibers can destroy this macroscopic central symmetry,… Click to show full abstract

Fused silica are common fiber materials which have macroscopic central symmetry without second-order nonlinearity. Studies have shown that thermal poling of fused silica fibers can destroy this macroscopic central symmetry, resulting in second-order nonlinearity or linear electro-optical effects. In this paper, a new type of double-hole optical fiber is designed. A two-dimensional (2D) numerical model is used to simulate the movement of ions and the formation of space charge region by finite element analysis. It is found that the single round square hole structure of the new double-hole fiber promotes the thermal poling process. The effective second-order nonlinear coefficient χ eff ( 2 ) of the new double-hole poled fiber is 0.28 pm/V at the core center, which is 0.05 pm/V higher than that of the circular double-hole poled fiber. In the fiber core, the radial distribution of the internal electric field and of χ eff ( 2 ) is calculated and analyzed. The results of this paper are of great significance for the application of thermally poled fibers on nonlinear all-fiber devices.

Keywords: thermal poling; hole optical; double hole; new double; fiber

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.