LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of A Loss Minimization Based Operation Strategy for Embedded BTB VSC HVDC

Photo from wikipedia

Recently, there have been many cases in which direct current (DC) facilities have been placed in alternating current (AC) systems for various reasons. In particular, in Korea, studies are being… Click to show full abstract

Recently, there have been many cases in which direct current (DC) facilities have been placed in alternating current (AC) systems for various reasons. In particular, in Korea, studies are being conducted to install a back-to-back (BTB) voltage-sourced converter (VSC) high-voltage direct current (HVDC) to solve the fault current problem of the meshed system, and discussions on how to operate it have been made accordingly. It is possible to provide grid services such as minimizing grid loss by changing the HVDC operating point, but it also may violate reliability standards without proper HVDC operation according to the system condition. Especially, unlike the AC system, DC may adversely affect the AC system because the operating point does not change even after a disturbance has occurred, so strategies to change the operating point after the contingency are required. In this paper, a method for finding the operating point of embedded HVDC that minimizes losses within the range of compliance with the reliability criterion is proposed. We use the Power Transfer Distribution Factor (PTDF) to reduce the number of buses to be monitored during HVDC control, reduce unnecessary checks, and determine the setpoints for the active/reactive power of the HVDC through system total loss minimization (STLM) control to search for the minimum loss point using Powell’s direct set. We also propose an algorithm to search for the operating point that minimizes the loss automatically and solves the overload occurring in an emergency through security-constrained loss minimization (SCLM) control. To verify the feasibility of the algorithm, we conducted a case study using an actual Korean power system and verified the effect of systematic loss reduction and overload relief in a contingency. The simulations are conducted by a commercial power system analysis tool, Power System Simulator for Engineering (PSS/E).

Keywords: system; hvdc; loss; operating point; loss minimization

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.