LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Retrieving Performances of Vortex Beams with GS Algorithm after Transmitting in Different Types of Turbulences

Photo from wikipedia

The transmission of the orbital angular momentum (OAM) beam has attracted a lot of attention in the field of free-space optical (FSO) communication. Usually, after transmitting in atmospheric turbulences, the… Click to show full abstract

The transmission of the orbital angular momentum (OAM) beam has attracted a lot of attention in the field of free-space optical (FSO) communication. Usually, after transmitting in atmospheric turbulences, the helical phase-front of OAM beams will be severely distorted, and there will exist the intermode crosstalk. As a result, the performance of the communication system will degrade significantly. In this paper, we have investigated the influences of the level of the turbulence strength to the transmitting OAM beams by changing the refractive-index structural parameter of C n 2 and the number of turbulence random phase screens of N in simulation environment. Then, by adopting the Gerchberg-Saxton (GS) algorithm, which can be used to compute the pre-compensation phase and correct the distorted OAM beams, the retrieving performances of transmitting single and multiplexed OAM beams under different turbulence strengths were also investigated. The simulation results show that with increasing the atmospheric-turbulence strength levels determined by the parameters C n 2 and N, the retrieving performances decrease dramatically. When the turbulence strength level is selected within an appropriate range, the OAM beams can be effectively retrieved by adopting GS algorithm and observing the power density spectrum. Notably, the retrieving performance for the transmission of a single OAM beam is better than that of the multiplexing OAM beam.

Keywords: oam beams; turbulence strength; retrieving performances; performances vortex; oam beam

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.