LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast Multi-Objective Antenna Optimization Based on RBF Neural Network Surrogate Model Optimized by Improved PSO Algorithm

Photo from wikipedia

In this paper, a radial basis function neural network (RBFNN) surrogate model optimized by an improved particle swarm optimization (PSO) algorithm is developed to reduce the computation cost of traditional… Click to show full abstract

In this paper, a radial basis function neural network (RBFNN) surrogate model optimized by an improved particle swarm optimization (PSO) algorithm is developed to reduce the computation cost of traditional antenna design methods which rely on high-fidelity electromagnetic (EM) simulations. Considering parameters adjustment and update mechanism simultaneously, two modifications are proposed in this improved PSO. First, time-varying learning factors are designed to balance exploration and exploitation ability of particles in the search space. Second, the local best information is added to the updating process of particles except for personal and global best information for better population diversity. The improved PSO is applied to train RBFNN for determining optimal network parameters. As a result, the constructed improved PSO-RBFNN model can be used as a surrogate model for antenna performance prediction with better network generalization capability. By integrating the improved PSO-RBFNN surrogate model with multi-objective evolutionary algorithms (MOEAs), a fast multi-objective antenna optimization framework for multi-parameter antenna structures is then established. Finally, a Pareto-optimal planar miniaturized multiband antenna design is presented, demonstrating that the proposed model provides better prediction performance and considerable computational savings compared to those previously published approaches.

Keywords: improved pso; antenna; model; surrogate model; network

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.