The utilization of modal frequency sensors is a feasible and effective way to monitor the settlement problem of the transmission tower foundation. However, the uncertainties and interference in the real… Click to show full abstract
The utilization of modal frequency sensors is a feasible and effective way to monitor the settlement problem of the transmission tower foundation. However, the uncertainties and interference in the real operation environment of transmission towers highly affect the accuracy and identification of modal frequency sensors. In order to reduce the interference of modal frequency sensors for transmission towers, a Kriging surrogate model is proposed in this study. The finite element model of typical transmission towers is created and validated to provide the effective original database for the Kriging surrogate model. The prediction accuracy and convergences of the Kriging surrogate model are measured and confirmed. Besides the merits in computational cost and high-efficiency, the Kriging surrogate model is proven to have a satisfied and robust interference reduction capacity. Therefore, the Kriging surrogate model is feasible and competitive for interference filtration in the settlement surveillance sensors of steel transmission towers.
               
Click one of the above tabs to view related content.