LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantitative CT Analysis for Predicting the Behavior of Part-Solid Nodules with Solid Components Less than 6 mm: Size, Density and Shape Descriptors

Photo from wikipedia

Persistent part-solid nodules (PSNs) with a solid component Click to show full abstract

Persistent part-solid nodules (PSNs) with a solid component <6 mm usually represent minimally invasive adenocarcinomas and are significantly less aggressive than PSNs with a solid component ≥6 mm. However, not all PSNs with a small solid component behave in the same way: some nodules exhibit an indolent course, whereas others exhibit more aggressive behavior. Thus, predicting the future behavior of this subtype of PSN remains a complex and fascinating diagnostic challenge. The main purpose of this study was to apply open-source software to investigate which quantitative computed tomography (CT) features may be useful for predicting the behavior of a select group of PSNs. We retrospectively selected 50 patients with a single PSN with a solid component <6 mm and diameter <15 mm. Computerized analysis was performed using ImageJ software for each PSN and various quantitative features were calculated from the baseline CT images. The area, perimeter, mean Feret diameter, linear mass density, circularity and solidity were significantly related to nodule growth (p ≤ 0.031). Therefore, quantitative CT analysis was helpful for predicting the future behavior of a select group of PSNs with a solid component <6 mm and diameter <15 mm.

Keywords: solid nodules; component; predicting behavior; solid component; analysis; part solid

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.