LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application Research of Multi-Mode Relay in Future Heterogeneous Networks

Photo by bradencollum from unsplash

The fast increase of users in existing mobile networks requires more base stations (BSs) to bear more communication traffic. Future heterogeneous network is considered to be a promising candidate architecture… Click to show full abstract

The fast increase of users in existing mobile networks requires more base stations (BSs) to bear more communication traffic. Future heterogeneous network is considered to be a promising candidate architecture to meet the demands of wireless networks under scarcity of radio frequency (RF) resources. In this paper, we present a multi-mode relay (MMR) model based on two-way relay technology, which is applied to heterogeneous hierarchical wireless networks (HHWN), and set up a system model of HHWN with 3 tiers, 2 users between the macrocell, and the picocell as the multi-mode relay (MMR). Specifically, we consider the new system with unequal relay emission power situation, which is usually researched in the traditional literature with equal relay emission powers. Based on this idea, we define the two-way SINR ratio, derive the mathematical formulas of outage error probability with channel estimation errors, and verify theoretical expressions by data simulations. For further comparison, several experiments are implemented to illuminate the effect on outage probability among different levels of relay emission power, noise power, and signal power. Furthermore, several conclusions are obtained, which have some meanings for implementing MMR in future heterogeneous networks.

Keywords: heterogeneous networks; relay; mode relay; multi mode; future heterogeneous

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.