LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Waste Heat-Driven Cooling System Based on Combined Organic Rankine and Vapour Compression Refrigeration Cycles

Photo from wikipedia

In this paper, a heat driven cooling system that essentially integrated an organic Rankine cycle power plant with a vapour compression cycle refrigerator was investigated, aiming to provide an alternative… Click to show full abstract

In this paper, a heat driven cooling system that essentially integrated an organic Rankine cycle power plant with a vapour compression cycle refrigerator was investigated, aiming to provide an alternative to absorption refrigeration systems. The organic Rankine cycle (ORC) subsystem recovered energy from the exhaust gases of internal combustion engines to produce mechanical power. Through a transmission unit, the produced mechanical power was directly used to drive the compressor of the vapour compression cycle system to produce a refrigeration effect. Unlike the bulky vapour absorption cooling system, both the ORC power plant and vapour compression refrigerator could be scaled down to a few kilowatts, opening the possibility for developing a small-scale waste heat-driven cooling system that can be widely applied for waste heat recovery from large internal combustion engines of refrigerated ships, lorries, and trains. In this paper, a model was firstly established to simulate the proposed concept, on the basis of which it was optimized to identify the optimum operation condition. The results showed that the proposed concept is very promising for the development of heat-driven cooling systems for recovering waste heat from internal combustion engines’ exhaust gas.

Keywords: cooling system; system; heat driven; driven cooling; vapour compression; heat

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.