LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristics of Ordinary Portland Cement Using the New Colloidal Nano-Silica Mixing Method

Photo from wikipedia

This study applies a new method of mixing colloidal nano-silica (CNS). Previous studies have used powdered nano-silica or colloidal nano-silica and applied a binder weight substitution method. In this study,… Click to show full abstract

This study applies a new method of mixing colloidal nano-silica (CNS). Previous studies have used powdered nano-silica or colloidal nano-silica and applied a binder weight substitution method. In this study, we tried to use ordinary Portland cement (OPC) as a binder and replace CNS with weight of mixing water. CNS was replaced by 10%, 20%, 30%, 40%, and 50% of the mixing water weight. The flow value, setting time, compressive strength, hydration reactant (X-ray diffractometer; XRD), pore structure (mercury intrusion porosimetry; MIP), thermal analysis, and scanning electron microscopy (SEM) analysis were performed. Experimental results show that the new substitution method improves the mechanical and microstructural properties through two effects. One is that the weight substitution of the mixing water shows a homogeneous dispersion effect of the nano-silica particles. The other is the effect of decreasing the w/b ratio when the CNS is substituted because the CNS is more dense than the mixing water. Therefore, we confirmed the applicability of mixing water weight replacement method as a new method of mixing CNS.

Keywords: mixing water; nano silica; colloidal nano; method

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.