LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Head Control Strategy of the Snake Robot Based on Segmented Kinematics

Photo by zahraamiri_ from unsplash

Head control is important for snake robots to work in an unknown environment. However, the existing methods of head control have certain application limitations for snake robots with different configurations.… Click to show full abstract

Head control is important for snake robots to work in an unknown environment. However, the existing methods of head control have certain application limitations for snake robots with different configurations. Thus, a strategy for head control based on segmented kinematics is proposed. Compared with the existing head control strategies, our strategy can adapt to different structures of snake robots, whether wheeled or non-wheeled. In addition, our strategy can realize the accurate manipulation of the snake robot head. The robot body is divided into the base part, neck part and head part. First, parameters of backbone curve are optimized for enlarging the area of the support polygon. Then the desired pose for the head link and the dexterous workspace of the head part can in turn derive the desired position and direction of the end frame for the neck part. An optimization algorithm is proposed to help the end frame of the neck part approach a desired one and obtains the joint angles of the neck part. When the actual frames of the neck part are determined, the dexterous workspace of the head part will cover the desired pose of the head link. Then the TRAC-IK inverse kinematics algorithm is adopted to solve the joint angles of the head part. To avoid the collision between the body and the ground, a trajectory planning method of the overall body in Cartesian space is proposed. Finally, simulations validate the effectiveness of the control strategy.

Keywords: strategy; head control; kinematics; part

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.