LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting Student Achievement Based on Temporal Learning Behavior in MOOCs

Photo from wikipedia

With the development of data mining technology, educational data mining (EDM) has gained increasing amounts of attention. Research on massive open online courses (MOOCs) is an important area of EDM.… Click to show full abstract

With the development of data mining technology, educational data mining (EDM) has gained increasing amounts of attention. Research on massive open online courses (MOOCs) is an important area of EDM. Previous studies found that assignment-related behaviors in MOOCs (such as the completed number of assignments) can affect student achievement. However, these methods cannot fully reflect students’ learning processes and affect the accuracy of prediction. In the present paper, we consider the temporal learning behaviors of students to propose a student achievement prediction method for MOOCs. First, a multi-layer long short-term memory (LSTM) neural network is employed to reflect students’ learning processes. Second, a discriminative sequential pattern (DSP) mining-based pattern adapter is proposed to obtain the behavior patterns of students and enhance the significance of critical information. Third, a framework is constructed with an attention mechanism that includes data pre-processing, pattern adaptation, and the LSTM neural network to predict student achievement. In the experiments, we collect data from a C programming course from the year 2012 and extract assignment-related features. The experimental results reveal that this method achieves an accuracy rate of 91% and a recall of 94%.

Keywords: student achievement; student; temporal learning; moocs; predicting student

Journal Title: Applied Sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.