LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Are CH4, CO2, and N2O Emissions from Soil Affected by the Sources and Doses of N in Warm-Season Pasture?

Photo from wikipedia

The intensification of pasture production has increased the use of N fertilizers—a practice that can alter soil greenhouse gas (GHG) fluxes. The objective of the present study was to evaluate… Click to show full abstract

The intensification of pasture production has increased the use of N fertilizers—a practice that can alter soil greenhouse gas (GHG) fluxes. The objective of the present study was to evaluate the fluxes of CH4, CO2, and N2O in the soil of Urochloa brizantha ‘Marandu’ pastures fertilized with different sources and doses of N. Two field experiments were conducted to evaluate GHG fluxes following N fertilization with urea, ammonium nitrate, and ammonium sulfate at doses of 0, 90, 180, and 270 kg N ha−1. GHG fluxes were quantified using the static chamber technique and gas chromatography. In both experiments, the sources and doses of N did not significantly affect cumulative GHG emissions, while N fertilization significantly affected cumulative N2O and CO2 emissions compared to the control treatment. The N2O emission factor following fertilization with urea, ammonium nitrate, and ammonium sulfate was lower than the United Nations’ Intergovernmental Panel on Climate Change standard (0.35%, 0.24%, and 0.21%, respectively, with fractionation fertilization and 1.00%, 0.83%, and 1.03%, respectively, with single fertilization). These findings are important for integrating national inventories and improving GHG estimation in tropical regions.

Keywords: ch4 co2; sources doses; co2 n2o; soil; pasture; ghg

Journal Title: Atmosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.