LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparisons between Mean and Turbulent Parameters of Aircraft-Based and Ship-Based Measurements in the Marine Atmospheric Boundary Layer

Photo from wikipedia

The Structure des Echanges Mer-Atmosphère, Propriétés Océaniques/ Recherche Expérimentale (SEMAPHORE) experiment was conducted over the oceanic Azores current located in the Azores Basin. The evolution of the marine atmospheric boundary… Click to show full abstract

The Structure des Echanges Mer-Atmosphère, Propriétés Océaniques/ Recherche Expérimentale (SEMAPHORE) experiment was conducted over the oceanic Azores current located in the Azores Basin. The evolution of the marine atmospheric boundary layer (MABL) was studied based on the evaluation of mean and turbulent data using in situ measurements by a ship and two aircrafts. The sea surface temperature (SST) field was characterized by a gradient of approximately 1 °C/100 km. The SST measured by aircraft decreased at a ratio of 0.25 °C/100 m of altitude due to the divergence of the infrared radiation flux from the surface. With the exception of temperature, the mean parameters measured by the two aircrafts were in good agreement with each other. The sensible heat flux was more dispersed than the latent heat flux according to the comparisons between aircraft and aircraft, and aircraft and ship. This study demonstrates the feasibility of using two aircraft to describe the MABL and surface flux with confidence.

Keywords: aircraft; marine atmospheric; atmospheric boundary; boundary layer; mean turbulent

Journal Title: Atmosphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.