LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ERA5 Reanalysis of Environments Conducive to Lightning-Ignited Wildfires in Catalonia

Photo from wikipedia

In the climate change context, wildfires are an increasing hazard in the Mediterranean Basin, especially those triggered by lightning. Although lightning activity can be predicted with a reasonable level of… Click to show full abstract

In the climate change context, wildfires are an increasing hazard in the Mediterranean Basin, especially those triggered by lightning. Although lightning activity can be predicted with a reasonable level of confidence, the challenge remains in forecasting the thunderstorm’s probability of ignition. The present work aims to characterise the most suitable predictors to forecast lightning-ignited wildfires. Several ERA5 parameters were calculated and compared for two different samples, thunderstorm episodes that caused a wildfire (n = 961) and ordinary thunderstorms (n = 1023) that occurred in Catalonia (NE Iberian Peninsula) in the 2006–2020 period. Lightning wildfires are mostly associated with dry thunderstorms, characterised by: weak-to-moderate Mixed-Layer Convective Available Potential Energy (MLCAPE, 150–1100 J kg−1), significant Dew Point Depression at 850 hPa (DPD850, 3.3–10.1 °C), high Most-Unstable Lifted Condensation Level (MULCL, 580–1450 m) and steep 500–700 hPa Lapse Rate (LR, −7.0–−6.3 °C). Under these conditions, with relatively dry air at lower levels, thunderstorms tend to be high-based, the rain evaporating before reaching the ground and lightning occurring without significant rainfall. Specifically forecasting the probability of LIW occurrence would be of great assistance to the forest protection tactical decision-making process, preparing for “dry” thunderstorm days where multiple ignitions can be expected.

Keywords: environments conducive; lightning ignited; conducive lightning; era5 reanalysis; ignited wildfires; reanalysis environments

Journal Title: Atmosphere
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.