LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation of Severe Dust Events over Egypt Using Tuned Dust Schemes in Weather Research Forecast (WRF-Chem)

Photo from wikipedia

Weather Research and Forecasting model coupled with chemistry (WRF-Chem) was used to simulate selected severe dust storm events over Egypt in terms of the aerosol optical depth (AOD). Two severe… Click to show full abstract

Weather Research and Forecasting model coupled with chemistry (WRF-Chem) was used to simulate selected severe dust storm events over Egypt in terms of the aerosol optical depth (AOD). Two severe events, which occurred on 22 January 2004 and 31 March 2013, are examined. The analysis includes three dust emission schemes: Goddard Chemistry Aerosol Radiation and Transport (GOCART), GOCART with Air Force Weather Agency (GOCART-AFWA), and GOCART with University of Cologne (GOCART-UOC). Each scheme was tested by adjusting coefficients related to the dust flux. The AOD and Single scattering albedo (SSA) from the model were compared against the same parameters derived from the Moderate-resolution Imaging Spectroradiometer (MODIS). The grid spacing for both of the data sets is 10 km. Results from the March 2013 event were also compared against point measurements from an Aerosol Robotic Network (AERONET) station in Cairo. Using WRF with built-in coefficients, all schemes resulted in underestimating AOD. After tuning the coefficients, it was possible to bring the model results closer to the observations from satellite and AERONET. Each severe event required a different tuning, depending on the origin and composition of the dust storm. Sensitivity analysis for each case is performed to identify the scheme that best simulates the given events based on spatial error distribution. A novel comparison of eigenvalue structures for images of both for AOD and SSA from model and MODIS was used. After tuning, the adjusted coefficient GOCART scheme is found to simulate AOD best across the country in both events. However, the results for the 2004 event from GOCART-UOC were closest to MODIS AOD over Cairo (within 5% bias). On the other hand, GOCART-AFWA produced nearest estimate of AOD for the 2013 event when compared to AERONET measurements (within 7% bias). For both of the events, SSA from GOCART and GOCART-AFWA schemes were found to be comparable to MODIS measurements with accuracy that was close to 98%. The accuracy from GOCART-UOC was around 93%.

Keywords: weather research; chemistry; gocart; aod; dust; wrf chem

Journal Title: Atmosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.