As a manifestation of low-altitude wind shear, a downburst is a localized, strong downdraft that can lead to disastrous wind on the ground surface. For effective pre-warning and forecasting of… Click to show full abstract
As a manifestation of low-altitude wind shear, a downburst is a localized, strong downdraft that can lead to disastrous wind on the ground surface. For effective pre-warning and forecasting of downbursts, it is particularly critical to understand relevant weather features that occur before and during a downburst process. It is important to identify the macroscopic features associated with the downburst weather process before considering fine-scale observations because this would greatly increase the accuracy and timeliness of forecasts. Therefore, we applied the wind-vector potential-temperature energy analysis (WPEA) method and CSU-CHILL X-band dual-polarization radar to explore the features of the downburst process. Here it was found that prior to the occurrence of the downburst of interest, the specific areas that should be monitored in future events could be determined by studying the atmospherically unstable areas using the WPEA method. Combining the WPEA method with dual-polarization radar observations, we can better distinguish the phase distribution of the hydrometeor in the process and greatly enhance the judgment of the possibility of the downburst. From exploration of the microphysical features of the downburst, we further found that ‘Zdr (differential reflectivity) column’ can be regarded as an important early warning indicator of the location of the downburst. Finally, a schematic of the formation process of the downburst according to the analyses was produced.
               
Click one of the above tabs to view related content.