LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Analysis of Heat Transfer through Hollow Brick Using Finite-Difference Method

Photo from wikipedia

The goal of the present work is to develop and test in detail a numerical algorithm for solving the problem of complex heat transfer in hollow bricks. The finite-difference method… Click to show full abstract

The goal of the present work is to develop and test in detail a numerical algorithm for solving the problem of complex heat transfer in hollow bricks. The finite-difference method is used to solve the governing equations. The article also provides a detailed description of the procedure for thickening the computational grid. The flow regime inside the hollow brick is turbulent, which is a distinctive feature of this work. As a rule, if the size of the cavities in the brick is greater than 20 cm and the temperature difference in the considered solution region is significant, then the numerical solution can be obtained in the turbulent approximation. The effect of surface emissivities of internal walls on the thermal transmission and air flow inside hollow brick is investigated. The distributions of isolines of the stream function and temperature are obtained. The results report that the emissivity of interior surfaces significantly affects the heat transfer through hollow bricks.

Keywords: transfer hollow; heat transfer; hollow brick

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.