LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear Eigenvalue Problems for the Dirichlet (p, 2)-Laplacian

We consider a nonlinear eigenvalue problem driven by the Dirichlet (p,2)-Laplacian. The parametric reaction is a Carathéodory function which exhibits (p−1)-sublinear growth as x→+∞ and as x→0+. Using variational tools… Click to show full abstract

We consider a nonlinear eigenvalue problem driven by the Dirichlet (p,2)-Laplacian. The parametric reaction is a Carathéodory function which exhibits (p−1)-sublinear growth as x→+∞ and as x→0+. Using variational tools and truncation and comparison techniques, we prove a bifurcation-type theorem describing the “spectrum” as λ>0 varies. We also prove the existence of a smallest positive eigenfunction for every eigenvalue. Finally, we indicate how the result can be extended to (p,q)-equations (q≠2).

Keywords: dirichlet laplacian; problems dirichlet; eigenvalue problems; nonlinear eigenvalue

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.