LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Order Compact Difference Method for Solving Two- and Three-Dimensional Unsteady Convection Diffusion Reaction Equations

Photo from wikipedia

In this paper, a type of high-order compact (HOC) finite difference method is developed for solving two- and three-dimensional unsteady convection diffusion reaction (CDR) equations with variable coefficients. Firstly, an… Click to show full abstract

In this paper, a type of high-order compact (HOC) finite difference method is developed for solving two- and three-dimensional unsteady convection diffusion reaction (CDR) equations with variable coefficients. Firstly, an HOC difference scheme is derived to solve the two-dimensional (2D) unsteady CDR equation. Discretization in time is carried out by Taylor series expansion and correction of the truncation error remainder, while discretization in space is based on the fourth-order compact difference formulas. The scheme is second-order accuracy in time and fourth-order accuracy in space. The unconditional stability is obtained by the von Neumann analysis method. Then, this scheme is extended to solve the three-dimensional (3D) unsteady CDR equation. It needs only a five-point stencil for 2D problems and a seven-point stencil for 3D problems. Moreover, the present schemes can solve the nonlinear Burgers equation. Finally, numerical experiments are conducted to show the good performances of the new schemes.

Keywords: dimensional unsteady; method; three dimensional; order compact; difference; order

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.