LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classification of Surfaces of Coordinate Finite Type in the Lorentz-Minkowski 3-Space

Photo from wikipedia

In this paper, we define surfaces of revolution without parabolic points in three-dimensional Lorentz–Minkowski space. Then, we classify this class of surfaces under the condition ΔIIIx=Ax, where ΔIII is the… Click to show full abstract

In this paper, we define surfaces of revolution without parabolic points in three-dimensional Lorentz–Minkowski space. Then, we classify this class of surfaces under the condition ΔIIIx=Ax, where ΔIII is the Laplace operator regarding the third fundamental form, and A is a real square matrix of order 3. We prove that such surfaces are either catenoids or surfaces of Enneper, or pseudo spheres or hyperbolic spaces centered at the origin.

Keywords: minkowski space; surfaces coordinate; lorentz minkowski; classification surfaces

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.