LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fractional Dynamics of a Measles Epidemic Model

Photo by thinkmagically from unsplash

In this work, we replaced the integer derivative with Caputo derivative to model the transmission dynamics of measles in an epidemic situation. We began by recalling some results on the… Click to show full abstract

In this work, we replaced the integer derivative with Caputo derivative to model the transmission dynamics of measles in an epidemic situation. We began by recalling some results on the local and global stability of the measles-free equilibrium point as well as the local stability of the endemic equilibrium point. We computed the basic reproduction number of the fractional model and found that is it equal to the one in the integer model when the fractional order ν = 1. We then performed a sensitivity analysis using the global method. Indeed, we computed the partial rank correlation coefficient (PRCC) between each model parameter and the basic reproduction number R0 as well as each variable state. We then demonstrated that the fractional model admits a unique solution and that it is globally stable using the Ulam–Hyers stability criterion. Simulations using the Adams-type predictor–corrector iterative scheme were conducted to validate our theoretical results and to see the impact of the variation of the fractional order on the quantitative disease dynamics.

Keywords: measles epidemic; dynamics measles; epidemic model; model fractional; model; fractional dynamics

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.