LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On (k, ψ)-Hilfer Fractional Differential Equations and Inclusions with Mixed (k, ψ)-Derivative and Integral Boundary Conditions

Photo by benhershey from unsplash

In this paper we study single-valued and multi-valued (k,ψ)-Hilfer-type boundary value problems of fractional order in (1,2], subject to nonlocal boundary conditions involving (k,ψ)-Hilfer-type derivative and integral operators. The results… Click to show full abstract

In this paper we study single-valued and multi-valued (k,ψ)-Hilfer-type boundary value problems of fractional order in (1,2], subject to nonlocal boundary conditions involving (k,ψ)-Hilfer-type derivative and integral operators. The results for single-valued case are established by using Banach and Krasnosel’skiĭ fixed point theorems as well as Leray–Schauder nonlinear alternative. In the multi-valued case, we establish an existence result for the convex valued right-hand side of the inclusion via Leray–Schauder nonlinear alternative for multi-valued maps, while the second one when the right-hand side has non-convex values is obtained by applying Covitz–Nadler fixed point theorem for multi-valued contractions. Numerical examples illustrating the obtained theoretical results are also presented.

Keywords: derivative integral; hilfer fractional; boundary conditions; fractional differential; multi valued

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.