LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Label Classification of E-Commerce Customer Reviews via Machine Learning

Photo by nate_dumlao from unsplash

The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have… Click to show full abstract

The multi-label customer reviews classification task aims to identify the different thoughts of customers about the product they are purchasing. Due to the impact of the COVID-19 pandemic, customers have become more prone to shopping online. As a consequence, the amount of text data on e-commerce is continuously increasing, which enables new studies to be carried out and important findings to be obtained with more detailed analysis. Nowadays, e-commerce customer reviews are analyzed by both researchers and sector experts, and are subject to many sentiment analysis studies. Herein, an analysis of customer reviews is carried out in order to obtain more in-depth thoughts about the product, rather than engaging in emotion-based analysis. Initially, we form a new customer reviews dataset made up of reviews by Turkish consumers in order to perform the proposed analysis. The created dataset contains more than 50,000 reviews in three different categories, and each review has multiple labels according to the comments made by the customers. Later, we applied machine learning methods employed for multi-label classification to the dataset. Finally, we compared and analyzed the results we obtained using a diverse set of statistical metrics. As a result of our experimental studies, we found the Micro Precision 0.9157, Micro Recall 0.8837, Micro F1 Score 0.8925, and Hamming Loss 0.0278 to be the most successful approaches.

Keywords: customer reviews; classification; commerce customer; analysis; customer; multi label

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.