LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Swirling Flow of Chemically Reactive Viscoelastic Oldroyd-B Fluid through Porous Medium with a Convected Boundary Condition Featuring the Thermophoresis Particle Deposition and Soret-Dufour Effects

Photo by maxwbender from unsplash

In this study, an analysis of the rotating flow of viscoelastic Oldroyd-B fluid along with porous medium featuring the Soret–Dufour effects is explored. The heat transport mechanism is discussed with… Click to show full abstract

In this study, an analysis of the rotating flow of viscoelastic Oldroyd-B fluid along with porous medium featuring the Soret–Dufour effects is explored. The heat transport mechanism is discussed with the involvement of thermal radiation and heat source/sink. Additionally, the thermophoresis of particle deposition and chemical reaction are taken into the concentration equation in order to investigate the mass transportation in the liquid. To formulate the non-linear ordinary differential equations, the von Karman similarity approach is used in the system of partial differential equations and then integrated numerically by the bvp midrich scheme in Maple programming. Results are provided by graphical framework and tabular form. A quick parametric survey is carried out concerning flow field, thermal, and solutal distributions through graph representation. The curves show that increasing the values of the retardation time parameter decreases the radial velocity while increasing the angular velocity. Additionally, when the relaxation time parameter becomes powerful, the magnitude of the velocity curves decreases considerably in the radial and axial directions. The presence of a radiation parameter indicates that the fluid will absorb a greater amount of heat, which is equivalent to a higher temperature. Further, an increase in the stretching parameter leads to a reduction in the temperature components.

Keywords: soret dufour; viscoelastic oldroyd; thermophoresis particle; porous medium; dufour effects; oldroyd fluid

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.