LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Convergence Properties of a Stochastic Trust-Region Method with Inexact Restoration

Photo by briangarrityphoto from unsplash

We study the convergence properties of SIRTR, a stochastic inexact restoration trust-region method suited for the minimization of a finite sum of continuously differentiable functions. This method combines the trust-region… Click to show full abstract

We study the convergence properties of SIRTR, a stochastic inexact restoration trust-region method suited for the minimization of a finite sum of continuously differentiable functions. This method combines the trust-region methodology with random function and gradient estimates formed by subsampling. Unlike other existing schemes, it forces the decrease of a merit function by combining the function approximation with an infeasibility term, the latter of which measures the distance of the current sample size from its maximum value. In a previous work, the expected iteration complexity to satisfy an approximate first-order optimality condition was given. Here, we elaborate on the convergence analysis of SIRTR and prove its convergence in probability under suitable accuracy requirements on random function and gradient estimates. Furthermore, we report the numerical results obtained on some nonconvex classification test problems, discussing the impact of the probabilistic requirements on the selection of the sample sizes.

Keywords: convergence properties; region method; convergence; inexact restoration; trust region

Journal Title: Axioms
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.