In this article, we consider the nonparametric inference for the time-varying coefficient double-threshold generalized autoregressive conditional heteroscedastic models. The quasi-maximum exponential likelihood estimators (QMELEs) of the model’s parameters and the… Click to show full abstract
In this article, we consider the nonparametric inference for the time-varying coefficient double-threshold generalized autoregressive conditional heteroscedastic models. The quasi-maximum exponential likelihood estimators (QMELEs) of the model’s parameters and the asymptotic properties of the estimators are obtained. The simulation study implies that the distribution of the estimators is asymptotically normal. A real data application to stock returns is given. Both the simulations and real data example imply that the model and the QMELE are proper, compatible and accurately fit the financial time series data of the Nikkei 225.
               
Click one of the above tabs to view related content.