LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lipschitz Stability for Non-Instantaneous Impulsive Caputo Fractional Differential Equations with State Dependent Delays

Photo from wikipedia

In this paper, we study Lipschitz stability of Caputo fractional differential equations with non-instantaneous impulses and state dependent delays. The study is based on Lyapunov functions and the Razumikhin technique.… Click to show full abstract

In this paper, we study Lipschitz stability of Caputo fractional differential equations with non-instantaneous impulses and state dependent delays. The study is based on Lyapunov functions and the Razumikhin technique. Our equations in particular include constant delays, time variable delay, distributed delay, etc. We consider the case of impulses that start abruptly at some points and their actions continue on given finite intervals. The study of Lipschitz stability by Lyapunov functions requires appropriate derivatives among fractional differential equations. A brief overview of different types of derivative known in the literature is given. Some sufficient conditions for uniform Lipschitz stability and uniform global Lipschitz stability are obtained by an application of several types of derivatives of Lyapunov functions. Examples are given to illustrate the results.

Keywords: fractional differential; non instantaneous; differential equations; stability; lipschitz stability; caputo fractional

Journal Title: Axioms
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.