LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Influence of Li4Ti5O12 Preparation Method on Lithium-Ion Capacitor Performance

Photo from wikipedia

In this study, the importance of the preparation technique of Li4Ti5O12 (LTO) anode on its performance in a lithium-ion capacitor (LIC) application was investigated. These desired characteristics include energy density,… Click to show full abstract

In this study, the importance of the preparation technique of Li4Ti5O12 (LTO) anode on its performance in a lithium-ion capacitor (LIC) application was investigated. These desired characteristics include energy density, rate capability, and cycle life. The samples were prepared using three approaches, and the same sol-gel synthesis procedure is applied to obtain phase-pure samples and keep the structural properties similar. The influence of these methods on the LTO anodes was then explored in both half-cell and full-cell LIC devices with an activated carbon (AC) cathode. It was observed that the samples had similar specific capacities and energy densities at low specific currents. However, significant differences were observed in the samples’ morphological properties, the rate capability, and the full-cell cycle life performance. Electrochemical impedance spectroscopy was used to identify the electrochemical kinetics and revealed that the LIC with the best performance was influenced by the LTO anode having the least charge transfer and diffusion resistances prepared using a surfactant. This was due to the small particle size, good particle dispersion, and high specific surface area of the LTO anode. This result points to the importance of the choice of synthesis technique in LIC material’s overall performance.

Keywords: performance; ion capacitor; lithium ion; preparation

Journal Title: Batteries
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.