LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Investigation on Reversible Swelling Mechanisms of Lithium-Ion Batteries under a Varying Preload Force

Photo from wikipedia

The safety of lithium-ion batteries has to be guaranteed over the complete lifetime considering geometry changes caused by reversible and irreversible swellings and degradation mechanisms. An understanding of the pressure… Click to show full abstract

The safety of lithium-ion batteries has to be guaranteed over the complete lifetime considering geometry changes caused by reversible and irreversible swellings and degradation mechanisms. An understanding of the pressure distribution and gradients is necessary to optimize battery modules and avoid local degradation bearing the risk of safety-relevant battery changes. In this study, the pressure distribution of two fresh lithium-ion pouch cells was measured with an initial preload force of 300 or 4000 N. Four identical cells were electrochemically aged with a 300 or 4000 N preload force. The irreversible thickness change was measured during aging. After aging, the reversible swelling behavior was investigated to draw conclusions on how the pressure distribution affected the aging behavior. A novel test setup was developed to measure the local cell thickness without contact and with high precision. The results suggested that the applied preload force affected the pressure distribution and pressure gradients on the cell surface. The pressure gradients were found to affect the locality of the irreversible swelling. Positions suffering from large pressure variations and gradients increased strongly in thickness and were affected in terms of their reversible swelling behavior. In particular, the edges of the investigated cells showed a strong thickness increase caused by pressure peaks.

Keywords: reversible swelling; lithium ion; pressure; preload force

Journal Title: Batteries
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.