LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Yeast-Derived Sulfur Host for the Application of Sustainable Li–S Battery Cathode

Photo from wikipedia

A porous carbon structure (PCS) is considered as an ideal electrode material for lithium–sulfur (Li–S) batteries, owing to its flexible texture, large surface area, and high electrical conductivity. In this… Click to show full abstract

A porous carbon structure (PCS) is considered as an ideal electrode material for lithium–sulfur (Li–S) batteries, owing to its flexible texture, large surface area, and high electrical conductivity. In this work, we use food-grade yeast as the carbon precursor, which is proliferated in glucose solution, carbonized with a NaCl template to yield a sheet-like carbon structure, and reactivated at different temperatures with KOH. The porous carbon material is then applied as the sulfur host of the Li–S battery cathode, and the electrode is systematically characterized by means of SEM, TEM, XRD, Raman, XPS, thermogravimetric (TG), nitrogen gas adsorption–desorption, and electrochemical measurements. The results show that the PCS obtained at 800 °C has an ultra-high surface area of 2410 m2 g−1 and exhibits excellent performance for a Li–S battery cathode. The initial discharge capacity of the PCS-800/S cathode is 1502 mAh g−1, which accounts for 90% of the theoretical capacity value.

Keywords: battery cathode; carbon; sulfur host; cathode

Journal Title: Batteries
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.