LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Lightweight Deep Learning Network on a System-on-Chip for Wearable Ultrasound Bladder Volume Measurement Systems: Preliminary Study

Photo by ldxcreative from unsplash

Bladder volume assessments are crucial for managing urinary disorders. Ultrasound imaging (US) is a preferred noninvasive, cost-effective imaging modality for bladder observation and volume measurements. However, the high operator dependency… Click to show full abstract

Bladder volume assessments are crucial for managing urinary disorders. Ultrasound imaging (US) is a preferred noninvasive, cost-effective imaging modality for bladder observation and volume measurements. However, the high operator dependency of US is a major challenge due to the difficulty in evaluating ultrasound images without professional expertise. To address this issue, image-based automatic bladder volume estimation methods have been introduced, but most conventional methods require high-complexity computing resources that are not available in point-of-care (POC) settings. Therefore, in this study, a deep learning-based bladder volume measurement system was developed for POC settings using a lightweight convolutional neural network (CNN)-based segmentation model, which was optimized on a low-resource system-on-chip (SoC) to detect and segment the bladder region in ultrasound images in real time. The proposed model achieved high accuracy and robustness and can be executed on the low-resource SoC at 7.93 frames per second, which is 13.44 times faster than the frame rate of a conventional network with negligible accuracy drawbacks (0.004 of the Dice coefficient). The feasibility of the developed lightweight deep learning network was demonstrated using tissue-mimicking phantoms.

Keywords: system; network; bladder; bladder volume; volume; deep learning

Journal Title: Bioengineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.