LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of LED Illumination Cycle and Carbon Sources on Biofilms of Haematococcus pluvialis in Pilot-Scale Angled Twin-Layer Porous Substrate Photobioreactors

Photo by ldxcreative from unsplash

Light-emitting diodes are increasingly used as artificial light sources in Haematococcus pluvialis cultivation due to the fact of their energy advantages. The immobilized cultivation of H. pluvialis in pilot-scale angled… Click to show full abstract

Light-emitting diodes are increasingly used as artificial light sources in Haematococcus pluvialis cultivation due to the fact of their energy advantages. The immobilized cultivation of H. pluvialis in pilot-scale angled twin-layer porous substrate photobioreactors (TL-PSBRs) was initially performed with a 14/10 h light/dark cycle and showed relatively low biomass growth and astaxanthin accumulation. In this study, the illumination time with red and blue LEDs at a light intensity of 120 µmol photons m−2 s−1 was increased to 16–24 h per day. With a light/dark cycle of 22/2 h, the biomass productivity of the algae was 7.5 g m−2 day−1, 2.4 times higher than in the 14/10 h cycle. The percentage of astaxanthin in the dry biomass was 2%, and the total amount of astaxanthin was 1.7 g m−2. Along with the increase in light duration, adding 10 or 20 mM NaHCO3 to the BG11-H culture medium over ten days of cultivation in angled TL-PSBRs did not increase the total amount of astaxanthin compared with only CO2 addition at a flow rate of 3.6 mg min−1 to the culture medium. Adding NaHCO3 with a 30–80 mM concentration inhibited algal growth and astaxanthin accumulation. However, adding 10–40 mM NaHCO3 caused algal cells to accumulate astaxanthin at a high percentage in dry weight after the first four days in TL-PSBRs.

Keywords: cycle; pilot scale; pluvialis; pluvialis pilot; scale angled; haematococcus pluvialis

Journal Title: Bioengineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.