LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microdevice Platform for In Vitro Nervous System and Its Disease Model

Photo by europeana from unsplash

The development of precise microdevices can be applied to the reconstruction of in vitro human microenvironmental systems with biomimetic physiological conditions that have highly tunable spatial and temporal features. Organ-on-a-chip… Click to show full abstract

The development of precise microdevices can be applied to the reconstruction of in vitro human microenvironmental systems with biomimetic physiological conditions that have highly tunable spatial and temporal features. Organ-on-a-chip can emulate human physiological functions, particularly at the organ level, as well as its specific roles in the body. Due to the complexity of the structure of the central nervous system and its intercellular interaction, there remains an urgent need for the development of human brain or nervous system models. Thus, various microdevice models have been proposed to mimic actual human brain physiology, which can be categorized as nervous system-on-a-chip. Nervous system-on-a-chip platforms can prove to be promising technologies, through the application of their biomimetic features to the etiology of neurodegenerative diseases. This article reviews the microdevices for nervous system-on-a-chip platform incorporated with neurobiology and microtechnology, including microfluidic designs that are biomimetic to the entire nervous system. The emulation of both neurodegenerative disorders and neural stem cell behavior patterns in micro-platforms is also provided, which can be used as a basis to construct nervous system-on-a-chip.

Keywords: system; microdevice; nervous system; platform; system chip

Journal Title: Bioengineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.