LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Morphological Changes of Glial Lamina Cribrosa of Rats Suffering from Chronic High Intraocular Pressure

Photo from wikipedia

Deformations or remodeling of the lamina cribrosa (LC) induced by elevated intraocular pressure (IOP) are associated with optic nerve injury. The quantitative analysis of the morphology changes of the LC… Click to show full abstract

Deformations or remodeling of the lamina cribrosa (LC) induced by elevated intraocular pressure (IOP) are associated with optic nerve injury. The quantitative analysis of the morphology changes of the LC will provide the basis for the study of the pathogenesis of glaucoma. After the chronic high-IOP rat model was induced by cauterizing episcleral veins with 5-Fluorouracil subconjunctival injection, the optic nerve head (ONH) cross sections were immunohistochemically stained at 2 w, 4 w, 8 w, and 12 w. Then the sections were imaged by a confocal microscope, and six morphological parameters of the ONH were calculated after the images were processed using Matlab. The results showed that the morphology of the ONH changed with the duration of chronic high IOP. The glial LC pore area fraction, the ratio of glial LC pore area to the glial LC tissue area, first decreased at 2 w and 4 w and then increased to the same level as the control group at 8 w and continued to increase until 12 w. The number and density of nuclei increased significantly at 8 w in the glial LC region. The results might mean the fraction of glial LC beam increased and astrocytes proliferated at the early stage of high IOP. Combined with the images of the ONH, the results showed the glial LC was damaged with the duration of chronic elevated IOP.

Keywords: iop; chronic high; lamina cribrosa; intraocular pressure

Journal Title: Bioengineering
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.